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Abstract

A technique for modeling plane wave propagation through inhomogeneous media and plasma
layers with different electron densities is presented. The technique is based on transmission line
theory.  Therefore, a general technique is introduced for solving complex transmission line
systems. A data structure and algorithm for representing, and simultaneously solving for all
nodes within the transmission line network is presented.  The method is based on representing
the network as a recursive tree structure and solving for the voltage, current, and impedance at
each node using  recursive  programming techniques. First, all frequency dependent parameters
within the tree structure are updated, then in a post-order traversing of the tree, the impedances at
each node are computed followed by a pre-order traversing of the tree to compute node voltages
and currents.  For plane wave propagation, the reflection coefficient, the electric field and
magnetic field are computed. The method is applied to normal incidence, but can easily be
extended to oblique incidence.
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I.  Introduction

In this paper we present a program for computer modeling and simulation of plane wave
propagation in inhomogeneous media. The technique is based on drawing an analogy between
plane wave propagation and transmission line theory. Next an algorithm for solving complex
transmission line networks is presented. This of course leads to the  algorithm for solving for
plane wave propagation.  The network is represented in the computer by a recursive binary tree
data structure.  Using recursive programming techniques, the node voltage current, and
impedance at each node within the tree structure is computed.  For plane wave propagation, the
reflection coefficient, the electric field and magnetic field are computed. In this manner the
frequency response of the network, from the source node to the receiving node is computed.  The
impulse response or the pulse response of the network is then calculated from the frequency
response using Fast Fourier Transforms.

Computer programs for modeling transmission line networks have been written using ABCD
parameters [1].  In this paper a new technique in which the frequency response is simultaneously
obtained at all nodes within the network is presented.

II.  Plane Wave / Transmission Line Analogy

Consider the plane wave propagation problem illustrated in Fig. 1. For this geometry,

Ey = Ez = 0          Hx = Hz = 0
∂Ex
∂x  = ∂Ex

∂y  = 0              ∂Hy
∂x  = ∂Hy

∂y  = 0
(1)
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Figure 1. Plane Wave Propagation

Maxwell’s equations reduce to



dEx
dz  = -jωµHy     

dHy
dz  = -jωεEx (2)

These equations are similar to the differential equations for lossless transmission lines,

dV
dz  = -jωLI     dI

dz = -jωCV
 (3)

Hence, the theory used to describe propagation in transmission lines applies equally well to
plane-wave propagation. Next, consider the discontinuity at the boundary  between two different
medium with different dielectric constants. See Fig. 2. This condition is similar to the
discontinuity when two different transmission lines with different characteristic impedances are
connected to each other as shown in Fig. 3.
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Figure 2. Plane wave discontinuity
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Figure 3. Transmission line discontinuity

The analogy between transmission lines and plane wave propagation ( normal incidence) is
summarized in Table 1. Note that the mismatch at the discontinuity is represented by a reflection
coefficient for each case.



Table 1. Plane Wave/ Transmission Line Analogy
Transmission Line

Quantity
Symbol or Equation Plane-Wave

Quantity
Symbol or Equation

Voltage V Electric field Intensity Ex
Current I Magnetic field intensity Hy

Inductance per unit length L Permeability µ
Capacitance per unit length C Permittivity ε
Characteristic impedance Z0 = L

C
Intrinsic impedance

η = µ
ε

Phase-shift constant β = ω LC Phase-shift constant β = ω µε
Velocity of propagation v = 1

LC
Velocity of propagation v = 1

µε
Reflection Coefficient ΓL = ZL -  Z0

ZL +  Z0
Reflection coefficient at 

between e1and e Γ = η2 -  η1
η2  +  η1

Incident wave power P+ = V
+2

2Z0

Incident wave power density P+ = Ex+2

2η
Reference: Robert G. Brown, Robert A. Sharpe, Willliam L. Hughes, Robert E. Post, Lines, Waves, and Antennas,

Second Edition, John Wiley and Sons, New York, 1973



Table II. Summary of Plasma Parameters of Interest
Permittivity, n electrons/cm3 ε = ε0εr = ε0 ( 1 - 81 n

fkHz2  )

Intrinsic Impedance
η = µ

ε
 = η0

1 - 81 n
fkHz2

Propagation Constant γ = α + j β =  j ω µ0ε0 1 - 81 n
fkHz2

Group Velocity vg =  dω
dβ

 =  c 1 - 81 n
fkHz2

Critical Frequency, e electron charge, m electron mass.ωp2 = e2n
mε0

 

Introduction  of loss due to collision
 Frequency   ν. ε = ε0 1 - ωp2

ω2 ( 1 - jν
ω

)

Attenuation Constant
α = η0ne2ν

2m ( ω2 + ν2 )

Based on the above discussion we can solve the problem of plane wave propagation through the
system shown in Fig.4, by solving the equivalent transmission line problem shown also.
Therefore, we will focus on solving general transmission line networks and return to plane wave
propagation later in the paper.
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Figure 4. Modeling propagation through multiple layers as transmission line sections.

III.  Transmission Line Networks

Consider the basic problem of simulating  pulse transmission through a loaded transmission line.
Assume that the pulse of interests is bandlimited with a cutoff frequency of fc . We can obtain the
pulse response by first computing frequency response of the network at equal intervals, then we
perform a complex multiplication of the frequency response of the pulse and the transmission
line network as calculated, and finally  the inverse FFT of the  result  yields the time domain
pulse response. Actually, the impulse response can also be obtained by computing the inverse
FFT of the frequency response. Therefore, as a first step in calculating the frequency response of
the network, we analyze the network response to a single sinusoid of frequency f0.  Consider the
loaded transmission line connected to the generator Eg through a source impedance Zs as shown
in Fig. 5 [2].
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Figure 5. Generator connected to loaded transmission line

The voltage and current at any point on the transmission line can be obtained from the following
expressions:



v(x) =
vs z0
z0 + zs

e-γx
1 + ΓLe

-2γ(L-x)

1 − ΓsΓLe
-2γL

(4)

i(x) =
vs

z0 + zs
e-γx

1 - ΓLe
-2γ(L-x)

1 − ΓsΓLe
-2γL

(5)

In the above expressions

γ = (r + jωl)(g + jωc) (6)

is the propagation constant and

z0 =
r + jωl
g + jωc (7)

is the characteristic impedance of the transmission line.  The expressions for the source and load
reflection coefficients are,

ΓL=
zL -z0
zL+z0 (8)

Γs =
zs -z0
zs +z0 (9)

The expression for v(x)  includes the superposition of all waves reflecting from the source and
load mismatches.  This can be seen by a Taylor series expansion of (4)

v(x) =
vs z0
z0 + zs

[ e-γx + ΓLe
-γ(L-x) + ΓL Γse

-γ(2L+x) +

ΓL
2
Γse

-γ(3L-x)+ΓL
2
Γs
2
e-γ(3L+x) + .. . ] (10)

To obtain the shape of the pulse at the load we evaluate v(L) at frequencies from f=0  to f=fc  in
discrete steps where fc is the cutoff frequency of the bandlimited pulse.  The number of points
must be a power of 2 such that the inverse FFT may be used to obtain the sampled pulse
response at the load.



Consider now the case where the boundary voltage and current are known on a section of
transmission line.  See Fig. 2. Evaluate v(0)  in (4) and then compute.

v(x)
v(0) = e-γx

1 + ΓLe
-2γ(L-x)

1 + ΓLe
-2γL

(8)

Also

i(x)
i(0) = e-γx

1 - ΓLe
-2γ(L-x)

1 − ΓLe
-2γL

(9)

Thus using (8) and (9) the voltage and current can be evaluated at any point on the transmission
line given the boundary voltage and current.
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Figure 6. Section of transmission line with boundary voltages and currents

With the above preliminaries, we will examine the simple network in Fig. 7 and present a
methodology for its solution. In Fig. 7, the nodes have been labeled n1 through n5.  To solve this
network, that is to obtain the voltage and current at each node and at any location within the
network, consider equation (4).  This equation suggests that if the impedance at node n1 was
known then the voltage and current at node n1 can be calculated from the generator and source
impedance.  Thus the first step is to obtain the impedance at n1.  This impedance is seen to
consist of the parallel combination of the impedance looking into n5 and n2 from n1.
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Figure 7. Example transmission line network

These impedances can be obtained by noting that (Fig. 8),

Zin(x) =
1 + ΓLe

-2γ(L-x)

1 − ΓLe
-2γ(L-x)

Z0
(10)

x=0 x=L

zL

L

z  (0)
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Figure 8. Input  impedance  of a loaded transmission line.

Thus, the first step is to calculate the impedances looking into n3 and n4 from n2.  The parallel
combination forms the impedance at n2.  The impedance at n1 is thus calculated by the parallel
combination of the impedances looking into n2 and n5.

Therefore, the following methodology is suggested for solving the network.  In the first pass,
starting from the three loaded end nodes, the impedances are calculated and the parallel
combination of these impedances at the parent node forms the parent node impedance. Working



backward in this manner, the impedance at the root node (n1 in the example) is calculated.  Using
(1) the voltage and current at the root node n1 is calculated.  Using (8) and (9) and the boundary
voltages and currents, calculated at the parent node, the voltage and current at each node in the
network can be calculated.  Note that the current at each node is split into two currents flowing
into each node.

In the case of propagation through layers of different medium, there are no branches. This
situation is highlighted in Figure 9. In this case the impedance at node n5 is computed first. Next,
the impedance at node n4 is computed and so forth until the total impedance looking into the
network is obtained. In the next phase, the voltage and currents are computed starting from the
source, node n1 and moving towards the load.

n1 n2 n3 n4 n5

Load

Source

Figure 9. Network of cascaded sections.

IV.  Recursive Programming and Data Structures

To introduce the algorithm for solving a complex transmission line network, we first consider the
case where the network is limited to the binary tree structure shown in Fig. 10.  In the figure, the
generator is connected to the root of the tree through a source impedance Zs.  The tree consists of
nodes which are either parents or leaves.  A leaf is a node which is terminated on a load.  For
example, n3, n4, n6, n7, n9, n11, and n12.  Parent nodes have two branches.  A left branch and a
right branch.  Nodes  n1,n2, n5, n8, and n10 are parent nodes.
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Figure 10. Transmission line network as a tree structure

In general each branch represents a transmission line with different characteristics and lengths.
Each section of transmission line is associated with the node on which it terminates.  Thus the
section of transmission line from the generator to the root node n1 is described in the data
structure pointed to by n1.  This concept is described below.

Each node has an associated data structure which occupies memory locations.  A pointer can be
defined which points to the data structure in memory.  As nodes are added to the tree, memory is
dynamically allocated for the data structure and a pointer is defined.

A detailed description of the algorithm to solve the binary tree representation of transmission line
network is available at:

       http://trantopcalc.sourceforge.net/trantopcalc_algorithm.htm



VIII.  Computer Simulation Results

1. Plane Wave Propagation Through Plasma

Figure 15 shows a plasma sandwitched between two media with dielectric constants er= 1.0. A
metal plate is placed against the second slab. The electron density of the plasma is 3.16*1014 e-

/cm3 corresponding to a critical frequency of 160 GHz.
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Figure 15. Plasma Propagation Model

Two cases are presented. In the first case, the impulse response over a bandwidth of
20*512=10240 MHz and starting frequency of 150 GHz is considered. For the second case, the
same bandwidth was used but the beginning frequency was at 200 GHz. Since in both cases, 512
frequency samples were obtained, the resulting impulse response has 1024 points. Assuming free
space propagation, the resolution corresponds to 2*c*dt where dt = 1/(1024*20*106)  and c is
the speed of light. 

Since the program stores the data structure of the network, it is possible to build an array which
corresponds to the distance away from the source at which various reflections occur. Thus, by
taking into account the group velocity in each medium and noting that we know the length of



each layer, we can calculate the time spent in each layer. Since dt is invariant, we can calculate
the distance corresponding to each sample through the following procedure:



/*
 * Code segment for calculating the distance corresponding to each reflected 
 *  sample in a layer
 */
   if (!plasma) velocity =SPEED_OF_LIGHT/sqrt(epsr);
   else
       velocity =SPEED_OF_LIGHT*sqrt(epsr);
    /*
     * Calculate time spent in layer
     */
   time = current_P->length/velocity;
    /*
     * Calculate the number of samples that are reflected from  this  layer
     * Factor of 2 corresponds to round trip time
     */
   j = (int) (2.0 *time/dt + 0.5);
   dist=0.0;
   i=0;
   for (jj = 1; jj <= j; jj++) {
        printf("%d %d length = %f vel = %e time = %e\n",plasmaFlag,j,
                          current_P->length,velocity,time    );
        dist +=  current_P->length/(float)j * 100.0; /* dist in cm */
         distance_A[i] = dist;
         fprintf(prof_F,"%d\t%e\t%f \n",i,dist,epsr);

         i++;
         if ( i >= npts ) break;
   }



The impulse response corresponding to the first case has a reflection due to the plasma and the
frequency  span below the critical frequency. In the second case the impulse response has no
reflection  due to the plasma but is reflected by the metal plate  as the frequency span is higher
than the critical frequency.

IV.  Conclusions

In this technical report, a computer program is described which simultaneously solves for all
nodes within complex networks of transmission lines.  A tree data structure was introduced for
representing the network in the computer.  Recursive procedures were presented for traversing
the tree . The algorithm was used to solve for plane wave propagation over  a band of a
dielectric, plasma and metal plate system.
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 Appendix C Code for Distance Calculation

/* 
 * This routine is a special routine that creates
 * an array of distance corresponding to lengths of
 * different segments. The calculation adjusts the length for
 * the speed of light in the medium.
 * This routine ignores the right nodes and goes all the way to the
 * load. Also  a file is created for the dielectric constant as a 
 *  function of distance
 * at a fixed frequency. 
 */
void BuildDistance(root_P, distance_A,dt,freq,npts)
struct node *root_P; /* pointer to node */
float distance_A[];
float dt;
float freq;
int npts;
{
float n,epsr,eps,nu;
float dist;
float time,accTime,totalTime;
float velocity;
int plasmaFlag=0;
int i,j,jj;
FILE    *prof_F;
struct node *current_P; /* pointer to node */

prof_F = fopen("profile.dat","w");

if ( root_P == (struct node *) NULL ) RET;

totalTime = 0;
current_P = root_P;
dist=0;
i=0;
fprintf(stderr,"dt freq npts  %e %e %d\n",dt,freq,npts);
/*
 * go through layers 
 */
do {
   /*
    * check if plasma
    */
   if(strncmp(current_P->typeName,"plasma",6) ==0 ) {

plasmaFlag = 1;
nu=current_P->r;
n=current_P->l;
epsr = 1.0-81e6*n/(freq*freq);
if(epsr > 0) {

eps = EPS0* epsr;
} else {

eps = -EPS0* epsr;
epsr=1.0;

}
   }
   else {

eps=current_P->c;



epsr = eps/EPS0;
   }
    printf("%s epsr = %e \n",current_P->name,epsr);

   if (!plasmaFlag) velocity =SPEED_OF_LIGHT/sqrt(epsr);
   else

 velocity =SPEED_OF_LIGHT*sqrt(epsr);
   time = current_P->length/velocity;
   j = (int) (2.0 *time/dt + 0.5);
   for (jj = 1; jj <= j; jj++) {
   printf("%d %d length =%f vel =%e time =%e\n",
             plasmaFlag,j,current_P->length,velocity,time);
        dist +=  current_P->length/(float)j * 100.0;

distance_A[i] = dist;
fprintf(prof_F,"%d\t%e\t%f \n",i,dist,epsr);

i++;
if ( i >= npts ) break;

   }

} while ( (current_P = current_P->left_P)  && (i < npts) );
if(i< npts) {

for(j=i;  j<npts; j++) {
   dist +=   dt * SPEED_OF_LIGHT * 100.0;
   distance_A[j] = dist;
   fprintf(prof_F,"%d\t%e\t%f \n",j,dist,epsr);
}

}
fclose(prof_F);

}




